The Tower of Hanoi problem on Pathh graphs

نویسندگان

  • Daniel Berend
  • Amir Sapir
  • Shay Solomon
چکیده

The generalized Tower of Hanoi problem with h ≥ 4 pegs is known to require a sub-exponentially fast growing number of moves in order to transfer a pile of n disks from one peg to another. In this paper we study the Pathh variant, where the pegs are placed along a line, and disks can be moved from a peg to its nearest neighbor(s) only. Whereas in the simple variant there are h(h−1)/2 possible bi-directional interconnections among pegs, here there are only h − 1 of them. Despite the significant reduction in the number of interconnections, the number of moves needed to transfer a pile of n disks between any two pegs also grows sub-exponentially as a function of n. We study these graphs, identify sets of mutually recursive tasks, and obtain a relatively tight upper bound for the number of moves, depending on h, n and the source and destination pegs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity of the Path Multi-Peg Tower of Hanoi

The Tower of Hanoi problem with h ≥ 4 pegs is long known to require a sub-exponential number of moves in order to transfer a pile of n disks from one peg to another. In this paper we discuss the Pathh variant, where the pegs are placed along a line, and disks can be moved from a peg to its nearest neighbor(s) only. Whereas in the simple variant there are h(h − 1)/2 bi-directional interconnectio...

متن کامل

Graphs S ( n , k ) and a variant of the Tower of Hanoi problem ∗

For any n ≥ 1 and any k ≥ 1, a graph S(n, k) is introduced. Vertices of S(n, k) are n-tuples over {1, 2, . . . , k} and two n-tuples are adjacent if they are in a certain relation. These graphs are graphs of a particular variant of the Tower of Hanoi problem. Namely, the graphs S(n, 3) are isomorphic to the graphs of the Tower of Hanoi problem. It is proved that there are at most two shortest p...

متن کامل

Combinatorics of topmost discs of multi-peg Tower of Hanoi problem

Combinatorial properties of the multi-peg Tower of Hanoi problem on n discs and p pegs are studied. Top-maps are introduced as maps which reflect topmost discs of regular states. We study these maps from several points of view. We also count the number of edges in graphs of the multi-peg Tower of Hanoi problem and in this way obtain some combinatorial identities.

متن کامل

Explorations in 4-peg Tower of Hanoi

Finding an optimal solution to the 4-peg version of the classic Tower of Hanoi problem has been an open problem since the 19th century, despite the existence of a presumed-optimal solution. We verify that the presumed-optimal Frame-Stewart algorithm for 4-peg Tower of Hanoi is indeed optimal, for up to 20 discs. We also develop a distributed Tower of Hanoi algorithm, and present 2D and 3D repre...

متن کامل

Algorithms and Bounds for Tower of Hanoi Problems on Graphs

The classic Tower of Hanoi puzzle was marketed by Edouard Lucas in 1883 under the name ”Tower of Hanoi” [31]. There, n disks are due to be moved from one peg to another, using an auxiliary peg while never placing a bigger disk above a smaller one. Its optimal solution is classic in Computer Science. In this thesis, we study a generalization of the original puzzle. The problem is generalized by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 160  شماره 

صفحات  -

تاریخ انتشار 2012